LEACHATE TREATMENT TECHNOLOGIES

PETE A. SHACK, P.E., CHMM

(615)263-5555

WHAT IS LEACHATE?

- WEBSTERS: A SOLUTION OR PRODUCT OBTAINED BY PASSING A LIQUID THROUGH A SUBSTANCE.
- WIKIPEDIA: ANY LIQUID THAT, IN THE COURSE OF PASSING THROUGH MATTER, EXTRACTS SOLUBLE OR SUSPENDED SOLIDS, OR ANY OTHER COMPONENT OF THE MATERIAL THROUGH WHICH IT HAS PASSED.
- MINE: SOUP OF THAT IS COOKED UP IN THE LANDFILL MADE UP OF WASTES PLUS DEGRADATION PRODUCTS.

LEACHATE CONTAINS

- DISSOLVED CHEMICALS
 - SALTS, METALS
 - DECOMPOSITION BYPRODUCTS
 - INDUSTRIAL WASTE
 - HOUSEHOLD HAZARDOUS WASTE
- SOLIDS
 - SOIL AND GRIT
 - COLLOIDAL MATTER
 - BACTERIA

CHARACTERISTICS

- VARIES WIDELY
- BASED ON WHAT IS IN LANDFILL
- AMOUNT OF RAINFALL
- DEPTH OF LANDFILL
- AGE OF LANDFILL
- TYPE OF COVER

EFFECT OF AGE ON LEACHATE

	LANDFILL AGE		
Parameter	1-5 yrs	5-10 yrs	>10 yrs
BOD, mg/L	500 - 3,000	400 - 3,000	<400
COD, mg/L	1,200 - 8,000	4,000-10,000	<4,000
TKN, mg/L	100 - 1000	20 - 200	<50
NH ₄ -N, mg/L	50 - 500	200 - 500	<50
Organic Content	80% VFA	5 – 30% VFA+Humic/Fluvic Acids	Humic/Fulvic Acids
Metals	Low-Med	Low	Low
TDS, mg/L	4,000 – 9,000	2,000 – 6,000	<5,000
рН	4.5 - 6.5	6.5-7.5	>7.5

TYPICAL MSW LEACHATE

Parameter	Average
BOD, mg/L	400 – 3,000
COD, mg/L	1,500 – 10,000
TDS, mg/L	4,000 – 9,000
NH ₄ -N, mg/L	100 – 800
pH, SU	5.0 – 7.5

MSW WITH SMELTING WASTE

Parameter	Average	
BOD, mg/L	400 – 3,000	
COD, mg/L	1,900 – 10,000	
TDS, mg/L	10,000 – 75,000	
NH ₄ -N, mg/L	700 – 3,500	
рН	7.5 – 8.5	

MSW WITH WASTEWATER SLUDGE

Parameter	Average
BOD, mg/L	750 – 6,000
COD, mg/L	1,500 – 10,000
TDS, mg/L	5,000 – 15,000
NH ₄ -N, mg/L	500 – 1,500
рН	6.5 – 7.5

- HAULING TO TREATMENT PLANT (POTW)
- PRETREATMENT
- DISCHARGE VIA NPDES PERMIT
- LAND APPLICATION

\$0.10 - \$0.50/GAL

\$0.05 - \$0.25/GAL

\$0.005 - \$0.03/GAL

\$0.005 - \$0.10/GAL

- PHYSICAL
- CHEMICAL
- BIOLOGICAL

PHYSICAL TREATMENT (SEPARATION TECHNOLOGIES)

- SEDIMENTATION
 - HOLDING POND
- EVAPORATION
 - SPRAYING
 - HEATING
- AIR STRIPPING

- FILTRATION
 - GRANULAR MEDIA
 - ULTRAFILTRATION
 - REVERSE OSMOSIS
- ADSORPTION
 - CARBON
 - ION EXCHANGE

SEDIMENTATION

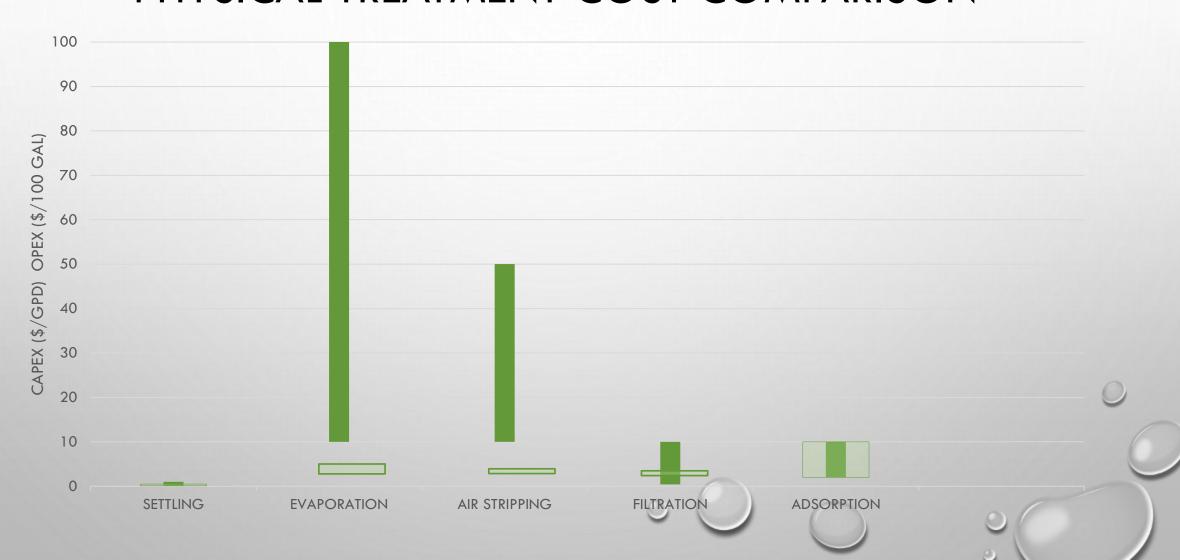
EVAPORATION



AIR STRIPPING

FILTRATION

ADSORPTION



PHYSICAL TREATMENT COSTS

	CAPITAL (\$/GPD)	OPERATING (\$/GAL)
SETTLING	0.1-1.0	0.001-0.005
EVAPORATION	10-100	0.005-0.03
AIR STRIPPING	10-50	0.001-0.01
FILTRATION	0.4-10	0.001-0.01
ADSORPTION	2-10	0.02-0.10

PHYSICAL TREATMENT COST COMPARISON

CHEMICAL TREATMENT

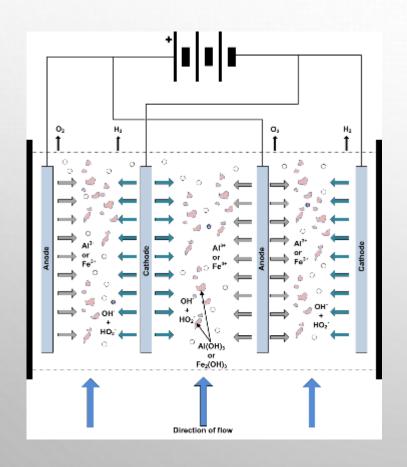
- PH ADJUSTMENT
- SEPARATION TECHNOLOGIES
 - COAGULATION
 - METALS PRECIPITATION
 - HYDROXIDE
 - SULFIDE
 - AMMONIA STRIPPING
 - ELECTROCOAGULATION

- CHEMICAL OXIDATION TECHNOLOGIES
 - CHLORINATION
 - OZONE/UV
 - HYDROGEN PEROXIDE
 - PERMANGANATE
 - CHLORINE DIOXIDE

PH ADJUSTMENT

COAGULATION

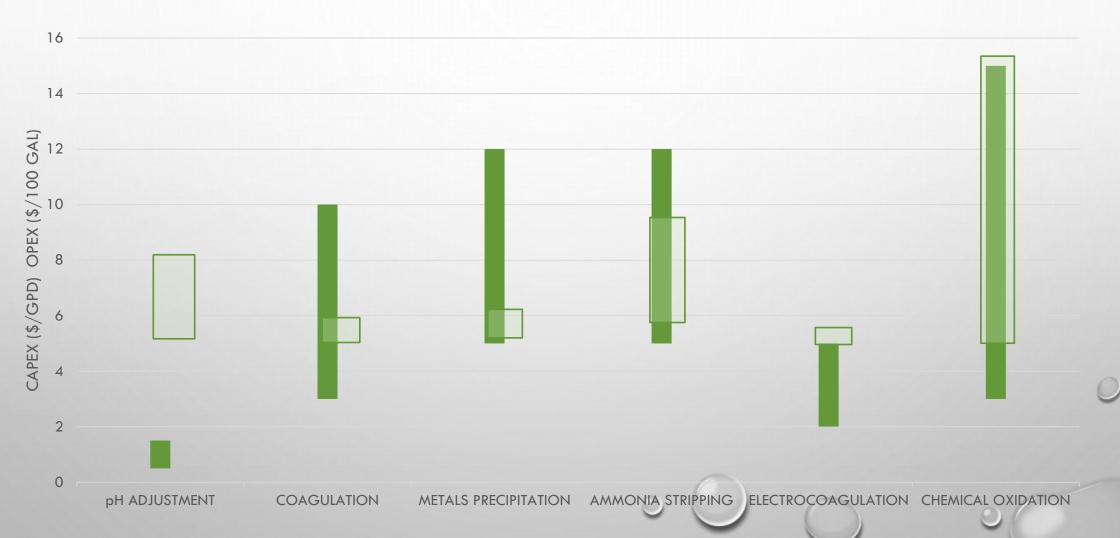
METALS PRECIPITATION



AMMONIA STRIPPING

ELECTROCOAGULATION

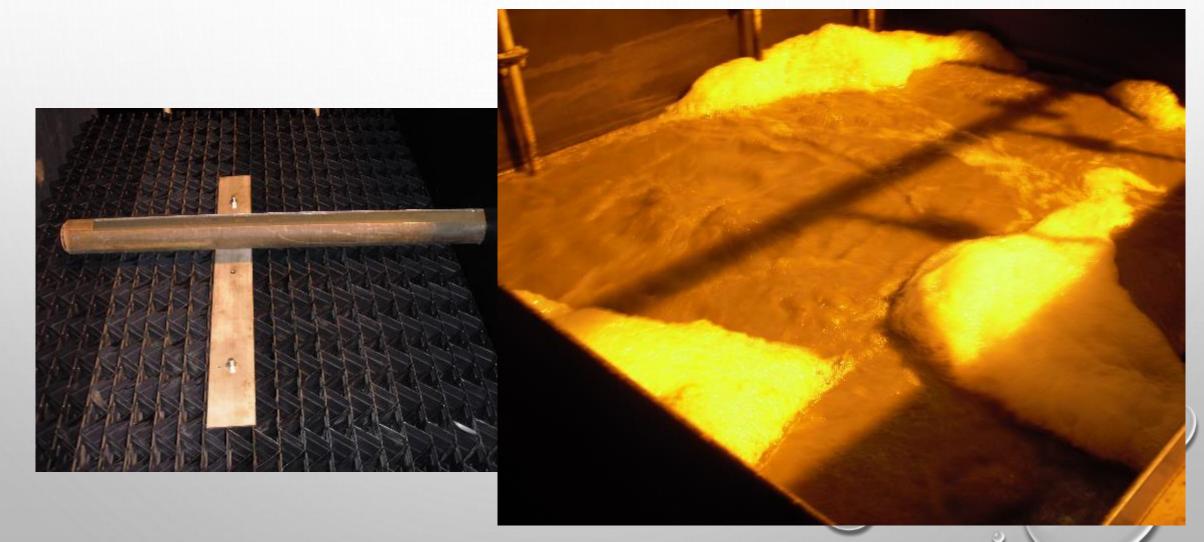
CHEMICAL OXIDATION


- COMMON OXIDANTS
 - BLEACH
 - HYDROGEN PEROXIDE
 - FENTONS REAGENT
 - OZONE
 - CHLORINE DIOXIDE

CHEMICAL TREATMENT COSTS

	CAPITAL (\$/GPD)	OPERATING (\$/GAL)
pH ADJUSTMENT	0.5-1.50	0.005-0.05
COAGULATION	3-10	0.003-0.015
METALS PRECIPITATION	5-12	0.005-0.02
AMMONIA STRIPPING	5-12	0.015-0.07
ELECTROCOAGULATION	2-5	0.001-0.01
CHEMICAL OXIDATION	3-15	0.003-0.15

CHEMICAL TREATMENT COST COMPARISON

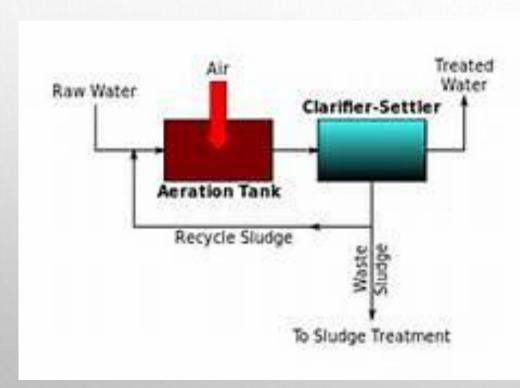

BIOLOGICAL TREATMENT

- FIXED FILM
 - FIXED BED
 - MOVING BED
- BIOREACTOR LANDFILL
- ARTIFICIAL WETLANDS

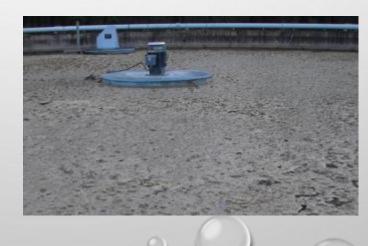

- ACTIVATED SLUDGE
 - CONVENTIONAL
 - SBR
 - MBR
- NITRIFICATION
- DENITRIFICATION

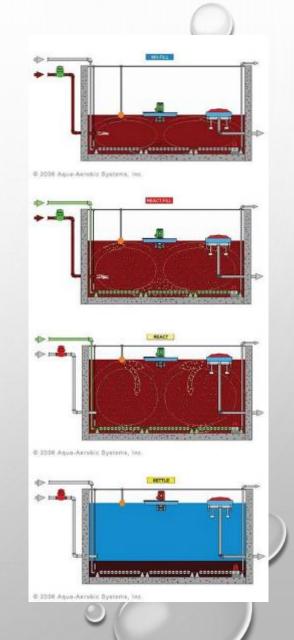
FIXED FILM

BIOREACTOR LANDFILL


ARTIFICIAL WETLAND

CONVENTIONAL ACTIVATED SLUDGE





SEQUENCING BATCH REACTOR

NITROGEN TREATMENTS

NITRIFICATION

AMMONIA + OXYGEN + ALKALINITY + NITRIFIERS

DENITRIFICATION

NITRATES + ORGANICS + BACTERIA

BIOLOGICAL TREATMENT COSTS

	CAPITAL (\$/GPD)	OPERATING (\$/GAL)
FIXED FILM	8–16	0.002-0.01
CONV. ACTIVATED SLUDGE	9-18	0.003-0.01
SBR	8-15	0.003-0.01
MBR	10-25	0.005-0.015
NITRIFICATION	10-25	0.007-0.02
DENITRIFICATION	10-25	0.005-0.015

BIOLOGICAL TREATMENT COST COMPARISON

TAKEAWAYS

- 1. THERE ARE MANY OPTIONS FOR LEACHATE TREATMENT.
- 2. LEACHATE TREATMENT SELECTION IS HIGHLY DEPENDENT UPON LEACHATE CHARACTERISTICS AND DISPOSAL REQUIREMENTS (SITE-SPECIFIC).
- 3. SOME LEACHATES ARE VERY CHALLENGING TO TREAT COST-EFFECTIVELY.
- 4. IT IS DIFFICULT AND RISKY TO BASE LEACHATE TREATMENT SELECTION WITH COST AS THE MAIN OR ONLY DRIVER.